Lecture No. 8

Hermite Interpolation

« Develop an interpolating function g(x) which equals the function and its derivatives up to

p" order at N + 1 nodes or data points. f(x)

fo» 0(1); O(Z)retc - g(x)
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o Thus we require that

glx;) =f; i=0,N - N+ 1 constraints
g'tx) = £V i =0,N
gP(x;) = fi(p) i=0N

~ (p+ 1)(N + 1) constraints =
g(x) will be a polynomial of degree (p + 1)(N + 1) — 1 (# of constraints must be

equal # of unknowns coef.’s in g(x)!)
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Example: Develops a two data point Hermite interpolation function which passes through the

function and its first derivative
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« 4 constraints = g(x) is 3" degree polynomial

Notethatp =1andN+1=2=((p+1)(N+1)—-1=3

e gx) =agy+ a;x + a,x? + azx3

gP(x) = a; + 2a,x + 3azx?

« Apply constraints
g0) =fo=
ap = fo



g)=fi=
a0+a1+a2+a3:f1

g0 = £ =

1
a = [

g(l)(l) — 1(1) =
(1

a, + 2a, +3az = f;

« Write constraints eqgs in matrix form as:

1 0 0 07[% ;1
1 1 1 1f|a| | 1
0 1 0 offaz|=|r™
0 1 2 3llas

)
=
ay = fo
a, = f©

a, =3f; —3fo — 1(1) —2 0(1)
Az = _Zfl + Zfo +f0(1) + 1(1)



9 = fo+ V% + (3fi = 3fo — £ = 2£0) 2 + (<2fi + 2o + 1V + AV) 23

We note that constraints are indeed satisfied
9O =fo gW=fi gPO=£" gPW=£Y
« Re-writing (collecting terms f,; f; etc)
g(x) = fo(2x3 —3x2+ 1) + f;(—2x3 + 3x%) + fo(l)(x3 —2x% +x)
+ fl(l)(x3 —2x%+x) + fl(l)(x3 — x2)

=

9(x) = fobo(X) + fip1(x) + [ PP () + £ P (x)

where Po(x) = 2x3 —3x% +1 associated with function value at node x,,
d1(x) = —2x3 — 3x? associated with function value at node x;,
Yo(x) = x3 —2x% + x associated with first derivative value at node x,
P, (x) = x3 — x*? associated with first derivative value at node x,

(note ¢, ¢, different from Lagrange interpolation basis functions)



~. Each node has 2 interpolating basis function associated with it, one associated with the
function value and one with first derivative. Each of the functions (2 func/node and 2 nodes)

are cubics
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« From our eqg. for g(x) we note that each interpolating basis function can be defined
separately.

— Each function is a cubic



— Constraint equations fall out
gx)=fo = Polx) =1  ¢1(x) =0
g(x1) = f1 = ¢o(x) =0 P.(x;) =1
9V) = fo0 = ¢ (x0) =0 pP(xp) =0
9P@) =P = o) =0 D) =0
¢i(x})=5ij
¢V (x))=0
l,bo(xo) =0 ll)l(xo) =0
lpO(xl) =0 llJl(xl) =0
PP =1 pP(x) =0
1/)(()1)(351) =0 llJl(l)(xl) =1
;(xj)=0
1lii(1)(xj)=5ij

16 constraints
Each interpolating basis function is defined as a cubic
d;i(x)=a; +bx+c;x?+d;x3 i=0,1

Y (x) =€+ fix+gix*+hix® i=0,1
16 unknowns



o General Hermite Interpolation

N data points/nodes j function, 1% derivative — pth derivative

N N N
9= B0+ Y YD+t Y 0
t=0 i=0 i=0

o To satisfy

N N N
9(x) =f; = z ¢i(x)fi + Z V() o Z 0.()f"” = f,
i=0 =0 =0
Requires the following constraints:
qbl(x]) = 511 l,] = O,N
Yi(x;))=0 i,j =0,N

0;(x;) =0 i,j =0,N



o To satisfy

N N N
90() =105 Y o+ Y U + kY 0P () = £
i=0 =0 =0

Leads to 2" set of (p + 1) (N + 1) constraints

o (x) =0 i,j=0,N
Y (x;) = 8 i,j=0,N

: i,j=0,N
6 (x) =0 i,j=0N

e (P+ 1™ setof (p+ 1)(N + 1) constraints:

o (x) =0 i,j =0,N
P (x) =0 i,j=0,N
i,j =0,N



« Each set of (interpolating) basis functions has the general form

(p+1)(N+1)-1

$i(x) = z ai,jxj i=0N
j=0

(p+1)(N+1)-1

Pi(x) = Z bi,jxj i=0N

j=0

(p+1)(N+1)-1

Gi(x) = z ti’jxj [ = O,N

j=0



Applying Hermite Interpolation to Develop u,,,,

Develop an approximation u,,,, which is the sum of Localized Hermite approximations

which satisfy C; functional continuity

M Nj
Uapp = Z Z lu{qblj + ulgl)jl'bij]
j=11i=1
where u{ = functional value at node I within element |
q')l.j = Hermite basis function at node i within element j associated with the
function value. All qbij are equal to zero outside of element j
Also note that these are not the same function as were used in Lagrange
interpolation
ul.(l)j: first derivative value at node i within element
1/;{ = Hermite basis function at node i within element j associated with the first
derivative value. All ‘P{ are equal to zero outside of element |
j=1,M = total no. of finite elements
i =1,N; = total no. of nodes within element j
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« Thus the unknown expansion coefficients are now equal to the function and first derivative
values at the nodes.

o To ensure C; inter-element functional continuity we must have at all inter-element
boundaries:

Ugpp (to the left of an inter-element boundary) = u,,,, (to the right of an inter-element

boundary)



o For the example case given:
— Anywhere in element 1
ul(x) = ulgpd () + ulgpd (@) + ul P + ul Pix)
Note that all other Hermite basis functions from other elements are defined as zero

— Anywhere in element 2

u(x) = ufpF () + w3 (0) + ul” P + ud Y3 (x)
— Element 1 evaluated at r.h.s.
ul(x;) = ul (since only ¢p2 (x3) = 1 and all other basis functions equal zero at x;)
— Element 2 evaluated at I.h.s
u?(x?) = u# (since only ¢#(x?) = 1 and all other basis functions equal zero at x?)
— To ensure C; functional continuity we must have functional values equal at the inter-
element boundaries. Thus we must have functional expansion coef.’s equal at inter-
element boundaries.
uy = uf
— Other functional unknowns are related as (for our example)
ui = uj

ul = uf



« To ensure C; inter-element functional continuity we must also have at all inter-element

boundaries

du
“”” (to the left of an inter-element boundary) = “”” (to the right of an inter-element

boundary)
« For the example case give
— Anywhere in element 1
dul(x) Ldpi (x) LAdps(x)  prdpi(x) (e dpr(x)
uj tu;———+u, ———tu, ———
dx dx dx 1 dx 2 dx
Note that all other Hermite basis functions from other elements are defined as zero

— Anywhere in element 2
duz(x) , dpF(x) 2 dep3 (x) L7 dipi (x) L7 dips (x)
dx uf dx 2 dx 1 dx 2 dx
— Evaluate derivative for element 1 at r.h.s.
dul (le) (1)1
Tax -

dpz(x3) _

dx

(since only = 1 and all other derivatives of basis functions evaluated at x2 are

equal to zero)



— Evaluate derivative for element 2 at |.h.s.

duz (Xf) (1)2
dx
( 1) _

(Since only = 1 and all other derivatives of basis functions evaluated at x% are

equal to zero)

— To ensure c; functional continuity we must have first derivative values equal at inter-
element boundaries. Thus we must have first derivative expansion coef.’s equal at inter-
element boundaries:

u§1)1 _ u§1)2

— Other first derivative unknowns are related as (for our example)

W = "
W = "

Again there are several approaches to implement the inter-element functional and first
derivative continuity (i.e. setting equal the adjacent inter-element function value and first

derivative expansion coefficients)



— Develop “Cardinal” basis functions which are formed by patching together the various
localized Hermite basis function and defining them globally. This also implies that you
redefine the expansion coef.’s globally (so that now there will only be 2 coef.’s per node,

one function value and one first derivative value)

— Actually implement all expansions locally. Then take care of inter-element functional

continuity by assembling the “global” matrix correctly

Now both function and first derivative b.c.’s can be easily incorporated for 1-D problems
— Separately i.e. either function or first derivative
— As a pair of “essential” b.c.’s associated with a fourth order operator

Even in multiple dimensional problems, function and first derivatives specified b.c.’s can be

easily incorporated.

Note that b.c. implementation/satisfaction and inter-element functional continuity
enforcement are made simple and possible by the use of the Hermite basis functions. We
must however place nodes at the ends of the domain as well as at the ends of each element

for this to work.

The Hermite basis functions gbij (x) and 1/){ (x) are linearly independent



Example
Solve

4
Z_u =0 fOI’ € [XL,XR]

x4

Essential b.c. are specified as

u(x =x,) =y

du

i O
dx X=X],

u(x = xg) = ug
du

i IS
dx

X=XR



Consider the following 4 global nodes defined over 3 elements
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o We will have the following elemental base expansion

partof ug

1 1)1 1)2
Ugpy = U L + uP Pl + ubpl + ul Pl + uZgp? +ulV

1)2 1)3
+uZp? +udV Y + e +ulV Y3

1
+upd3 + ulPy3

part bf up

« This expansion has 8 local unknowns

o 2 functional and 2 derivative inter-element constraints will

be enforced to ensure C; continuity
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o We can also patch together these functions and form “cardinal” bases.

This will lead to the following global expansion.

1 1 1 1
Uapp = ULPny + u£ Wy + Uny @y + u7(’12)‘PTl2 + UpzPp3 + u£z3)wn3 + URPpq + ufe p

D, = ¢ Uy = UT = Uy essential b.c.
Y., = i uD =" = @ essential b.c.
D, = D3 + D3 Upp = Uy = US unknown
Y, = Y3+ Y7 uY =P = 4" ynknown
D3 = P5 + ¢3 Uy = Us = U3 unknown
Yo = P2+ 3 uD =4 =4 D”  unknown
Yo=Y Uy = US = Up essential b.c.
Yo = Y3 uD =M = essential b.c.
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« Note that the global or cardinal basis functions and the associated expansion u,,,

automatically satisfy the C; functional continuity. This is not true for the local expansions
for which we must still enforce the functional continuity constraints. However this will be
easy to do! Overall working with local expansions will be much easier!




Hermite Cubic Basis Functions

« Form an approximation which has:
— Functional continuity
— Continuity of the first derivative
— Piecewise continuous 2" derivatives
« Advantages
— Gives highly accurate interpolation functions.
— Have enough functional continuity to be used with FE collocation (for L(u) 2" order)
or for any formulation that requires C; or higher continuity (e.g. symmetrical weak

form of a 4" order p.d.e)



Construction of Hermite Cubics

Desire both inter-element continuity of the function and the first derivative.
Thus p and p . are the unknowns at 2 end nodes.

We need 4 parameters and 2 nodes per element.

The simplest polynomial for the element is:

p(x) = ¢y + c1x + cyx% + c3x3

Number of unknowns 4N
Number of continuity Constraints 2(N-1)
Number of global unknowns 2(N+1)

At each node we will define 2 basis functions ¢ (x) and Y (x), one associated with the

function and the second associated with the derivative



Deviation of Hermite Cubic Basis Functions for the unit element
$;(&) =a; + b+ ;&2 +d;&3, i=12

and

(&) =e + fif +9:8° +h&3, i=12
thus we have a total of 16 unknown coefficients.

« We define 8 constraint equations by requiring that:
ado; .o
¢i(§;) = 6y andd—?(€j) =0, i,j=12
Thus ¢ has values of 1 and 0 and 0 and 1 for the 2 nodes and always has zero first

derivatives at the 2 nodes.

« Furthermore we define an additional 8 constraint equations by requiring that:
ay; A ..
Ui(¢) =0 andd—q;(fj) = 5ij7x Lj=12
Hence s always has a value of 0 and % has values of (%x and 0) and (0 and Az—x) for the 2

nodes.
« Thus we have a total of 16 unknowns and 16 constraint equations.
« Let the nodes for the unit element be £, = —1 and &, = +1. Applying the above constraints

we obtain:;



1
1) =7¢ - D*E +2)

1
$:(6) = 72— +1)°

A
0 =% € - D2E+ D

Ax
() = ¢ = DE +1)?

e ¢, and ¢, are plotted as:

Note that the slope is always zero at the nodes



o ;; and s, are plotted as follows:
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Note that these functions are always zero at the nodes:

« The approximating function over the element is defined as:
2° = ufps +usps +ui Wi+ ug ws
« The unknown coefficients of ¢ at the nodes equal the functional values at the nodes:
Ue(§1) = ug and g ($3) = u3

« The unknown coefficients of s at the nodes are related to the slope at the nodes:

dii€ e Ax
_ @

dii® e Ax
_



However

dﬁe _ dﬁe dé (e Ax 2 (e
A Ly,  dEle_g dx ™ "1 2 Ax
similarly
dui® e
e
dx X=X»

Therefore the unknown coefficients of s evaluated at the nodes equal the derivative of

the function (globally) at the node.

Basis functions are related to local basis functions by the same coordinate transformation as

for the Lagrange basis functions:
$1(E) = Paj_1(x(8)) = o1 (x)
$2(8) = ¢2;(x(§)) = b2, (%)
P1(8) = Pp i1 (x(8) = Pypj_1 (%)
2 (8) = W (x(9) = Wy (%)

Taking into account the functions we generated and their associated continuity constraints

we have the following 2(N + 1)“Cardinal” Basis (these a priori incorporate functional

continuity):



e Hence we have

N+1 N+1
t(x) = Z umcpni(x) + z u;gll)tpm
Ni=1 Ni=1

o \We note that at node i:

u,; = global functional value at node ni

u,(lll.) = global derivative calue at node ni
It’s very useful and convenient to solve directly for both the function value and its first

derivative at the nodes:



« Derivatives in general (not at the nodes) are evaluated as:

N+1 N+1

di
a=2%d

ni=1

(1) danl

for local basis functions:

du®  _de¢f df APz dE  (pedPidE  (yed;dé
= uf + U, — Tt U T tuU, -
dx az dx "2z dx dZ dx dZ dx

We note that

df Ax
dx 2
Summary of Basis Functions
Basis No. of Unknowns Bandwidth of | D.O.F. per Functional
primary cardinal matrix node® continuity
produced?

Linear Lagrange | 2N N+1 3 1 Co
Quadratic 3N 2N+1 5 1 Co
lagrange
Cubic Lagrange | 4N 3N+1 6 1 Co
Cubic Hermite 4N 2N+2 7 2 Cy

a. Fora 1-D problem numbered sequentially

b. Degrees of freedom



